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Prop-Chromeleon: Adaptive Haptic Props in Mixed Reality through Generative
AI

ANONYMOUS AUTHOR(S)

Fig. 1. Prop-Chromeleon transforms physical objects into adaptive passive haptic props: A) transforming a Paddington bear toy into
“a cute transformer toy”; B) transforming a 3D printed white building model into “a Empire State Building Architecture”; and C)
transforming a black Nike AF1 shoe into “a mix of Nike Air Foamposite One with Airmax 97 sneaker”.

Mixed Reality (MR) aims to seamlessly blend digital and physical worlds, but the absence of haptic feedback often disrupts the cohesion
between visual and tactile experiences. We introduce Prop-Chromeleon, which dynamically repurposes everyday objects as haptic
props for virtual assets using generative artificial intelligence (AI). Based on user prompts, Prop-Chromeleon generates virtual models
and textures that are fit and overlaid on the physical prop shape. Prop-Chromeleon enables a single physical prop to act as haptic
proxies for a wide range of virtual objects that through generative AI can change in real-time without the need for predefined proxies
or virtual libraries. We demonstrate Prop-Chromeleon’s effectiveness in adaptively transforming physical objects to haptic virtual
objects via a technical evaluation of diverse shapes and prompts. We also showcase Prop-Chromeleon’s ability to deliver believable
passive haptic experiences in an MR user study. Prop-Chromeleon offers a scalable and adaptive approach to improving haptic MR
experiences.
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1 INTRODUCTION

Mixed reality (MR) removes the barrier between the physical and digital world, unlocking natural and intuitive 3D
human, computer, and environmental interactions [29]. Consumer-level head-mounted displays like the Apple Vision
Pro [21] have made significant strides in display and audio technologies. However, haptic feedback – a critical component
for truly immersive experiences [20, 22] – is still notably absent in many MR applications today. This deficiency becomes
evident when users attempt to physically interact with virtual objects but only to see themselves passing through the
models, breaking the carefully crafted illusion of physical and virtual worlds blending together.

To bridge this gap, haptic devices have received significant attention in research from early force-feedback joysticks
like the Phantom Device [28] to grounded [9, 46], hand-held [16, 18] and various wearable devices [6, 10, 11, 14, 27,
36, 41, 52]. Despite these advancements, current haptic solutions remain costly and bulky, restricted to laboratory use,
or limited to simulate basic tactile sensations. Leveraging everyday objects as haptic props has been proposed as an
alternative approach because it eliminates the need for external devices [3, 15, 19]. However, this method also faces
challenges such as the mismatch between the varied shapes of virtual objects and the limited forms of physical ones. For
optimal immersion, the physical props should closely match their virtual partner to avoid visual-haptic discrepancies
that can disrupt user engagement [20, 42]. But in real-world environments, finding a universal set of physical props
that accommodate most virtual content is unrealistic.

We believe that an ideal MR passive haptic system should overcome these challenges by handling various everyday
objects across different user environments, creating case-by-case, on-demand haptic experiences. Generative artificial
intelligence (AI) has seen significant progress in recent years with 2D text-to-image applications like Stable Diffusion [45]
and Midjourney [30], ControlNet for precise control of generated images [51], and image-to-3D tools [47, 48, 53] have
made it possible to reconstruct 3D meshes from a single image input. We propose to leverage these models to enable
adaptive passive haptic props for MR.

We present Prop-Chromeleon, a MR system that leverages generative AI to adaptively transform daily objects into
tangible proxies to be used in MR interactions. Prop-Chromeleon takes user prompts as input, captures the depth map
of the physical object, and employs generative AI to create a corresponding 3D mesh. This mesh is then anchored to
the physical object in real-time using AR authoring tools with 6-DoF (Degrees of Freedom) tracking, ensuring that
the transformation remains accurate while the user is engaging with the object. Unlike conventional methods, Prop-
Chromeleon does not require sourcing real-world proxies, carrying compatible objects, or following preset procedural
steps. Instead, by leveraging generative AI, our system enables flexible transformations across various user settings.

We evaluated Prop-Chromeleon in two studies. First in a technical evaluation, we tested Prop-Chromeleon on a
wide range of object shapes and user prompts. We measured the generated shape disparity using established Chamfer
and Hausdorff distances, and assessed overall generation results through qualitative coding. The results showed a 90%
successful generation rate, increasing with personalized prompts, andHausdorff distances of 0.290 and Chamfer distances
of 0.431 for generated shapes relative to the original object shape. The results demonstrated Prop-Chromeleon’s ability
to adaptively and accurately generate virtual objects according to the physical prop and the user prompt. Second in an
MR user study, we explored users’ perceptions of Prop-Chromeleon’s performance and ability to provide passive haptic
experiences with various physical objects and prompts. Our results showed that compared to an AI-generated baseline
that does not consider the shape of the physical object, Prop-Chromeleon provides a significantly better perceived
haptic experience and was preferred by the majority of study participants. In summary, our main contributions are as
follows:
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(1) Prop-Chromeleon, an adaptive MR system capable of transforming any physical object into specified virtual
content while preserving its 3D structure.

(2) Results of a technical evaluation showing that Prop-Chromeleon is capable of handling a wide variety of
transformations from a combination of diverse user prompts and object shapes, and an accompanied open-
source dataset.

(3) Results of a user study showcasing Prop-Chromeleon’s ability to provide immersive haptic experiences while
also being preferred over a static baseline.

2 RELATEDWORK

Our work builds on previous work on passive haptics, virtual and physical integration, and generative AI.

2.1 Virtual and Physical Alignment

Researchers in the XR domain have proposed multiple works that attempt to align virtual and physical objects and
environments for various reasons. In virtual reality (VR), aligning virtual and physical objects enables passive haptics to
provide additional immersion to the virtual experience. For example, Haptic Retargeting [3] is a technique that capitalizes
on the dominance of visual cues to redirect users’ hands when interacting with virtual objects, thus improving the
sense of presence by aligning physical actions with virtual feedback. Similarly, VR Haptics at Home [15] uses common
household objects, such as chairs and pillows, as passive haptic props for predefined game elements such as cannons
and cats.

In the MR domain, several works attempt to align virtual and physical environments and objects to better integrate
the worlds for increased immersion, enhancing physical objects with virtual components for additionally functionality,
or simply replacing the texture of physical objects depending on the current need of applications. For example,
Annexing Reality [19] identifies physical objects in the user’s environment and overlays similarly shaped virtual objects
for haptic feedback during interaction with virtual objects. ARchitect [25] shares a similar idea and allows users to
actively reuse physical objects as interactables and obstacles with a preset of virtual models. Other approaches, such as
KinectFusion [23], create live voxel-based reconstructions of the environment, enabling intimate interaction between
virtual and physical realities. Projects like Remixed Reality [26] and SceneCtrl [50] expand on this concept, offering
options such as selecting, moving, deleting, and copying objects to tangibly interact with and manipulate MR scenes.
For outdoor applications, DreamWalker [49] allows users to walk in the real world while remaining fully immersed in
large virtual environments using a headset.

Although these projects show the potential for integrating physical and virtual worlds and the importance of haptics
for immersion, applications are commonly restricted to laboratory settings. As such, scalability issues arise due to their
lack of adaptability across diverse user environments. For example, ARchitect, Annexing Reality, and VR Haptics at
Home require a preset collection of haptic virtual objects, and when the system cannot find suitable real-world proxies,
the experience suffers due to visual-haptic mismatch. In Prop-Chromeleon, we leverage generative AI to adaptively
create virtual objects based on user prompts. This enables us to create virtual objects for a wide range of scenarios,
furthermore, adapting the shape of the generated virtual objects provides believable haptic experiences and limits
mismatches between the virtual and physical worlds.
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2.2 Visual-Haptic Mismatch

To perceive the surrounding environment, our brain needs to integrate sensory signals from a common source but
segregate those from other independent sources [39]. Thus, a conflict between visual and tactile perception can cause
confusion and negatively affect the user experience. Rock and Victor [38] were among the first to investigate human
experience when presented with conflicting visual and tactile information about an object’s properties, who showed
that although visual perception tends to dominate during such conflicts, a certain degree of mismatch is tolerable.

More recently, XR works have studied the extent to which virtual and physical environments can mismatch without
being noticeable or causing a significant degradation to the user experience. In Substitutional Reality, Simeone et al. [42]
explored the impact of these mismatches on the believability of VR experiences. In their study, participants interacted
with a virtual environment paired with corresponding physical proxies and experienced different types of mismatches
(e.g., shape, size, texture). They found that while some level of mismatch is tolerable, significant discrepancies largely
reduce the authenticity of the haptic experience, and that object shape was the most critical factor affecting believability.
Based on these findings, Smart Substitutional Reality [13] further explored this mismatch and found that enhanced
tactile feedback not only increases immersion and spatial presence, but also increases user tolerance for higher levels
of freedom in application design. These insights led us to develop Prop-Chromeleon which addresses visual-haptic
mismatch by adjusting the shape of the virtual object to the physical object’s shape. This enables Prop-Chromeleon to
deliver believable passive haptic experiences.

2.3 3D Content Creation with Generative AI

Generative AI has recently seen significant advancements in delivering text, images, videos, and other media to
a new era of AI for general creativity [5]. Text-to-image generation models that are pre-trained diffusion models
on large text-image datasets such as Stable Diffusion [45], Midjourney [30] and DALL·E [32, 33, 35] have shown
remarkable capabilities in producing high-quality images based on text-based user input. Furthermore, models such as
ControlNet [51] have expanded the input space to enable spatial control of these image generation models by integrating
features such as depth maps, normal maps, or soft edges which enable the creation of images based on specific 3D input
models. Finally, advances in 3D reconstruction from 2D images have progressed through the evolution of generative
models [24, 31, 47, 48, 53]. These methods can convert 2D images into 3D representations, such as meshes or point
clouds, and enables the integration of generated content into 3D environments such as MR.

The use of generative AI tools in virtual environments has attracted widespread interest. Sra et al. [43] investigated
using pre-scanned depth data and 3D reconstruction models to generate virtual reality scenes based on real-world
templates. In another study, Sra et al. [44] uses music and generative AI to automatically create kaleidoscopic textures
for virtual environments to elicit emotional responses in users. Recent work LLMR [12] presented a framework using
Large Language Models (LLM) as an architect of C# Unity code to create interactive real-time MR experiences. In a
related approach, Aghel Manesh et al. [1] users can prompt a LLM programming agent to create virtual environments
without needing a programming or technical background. We build on these works and combine text-to-2D models
with 3D reconstruction models and achieve prompt-guided 3D generation with spatial conditioning based on the user’s
prop and text-prompt to enable adaptive passive haptics in MR.

4



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Prop-Chromeleon CHI ’25, Apr 26th - May 1st, 2024, Yokohama, Kanagawa Prefecture, Japan

Fig. 2. Prop-Chromeleon from the user’s point of view. Left: The user inputs a "Master Yoda" text prompt to transform the Paddington
bear. Right: Prop-Chromeleon generates a 3D model that matches the prompt and is overlayed on the physical prop for haptic
interaction with the 3D model.

3 PROP-CHROMELEON SYSTEM

Prop-Chromeleon visually transforms real-world physical objects into 3D models with matching shapes, based on
user prompts for passive MR haptics. Designed for versatility and flexibility, Prop-Chromeleon can adapt to a wide
range of object shapes, enabling users to engage their imagination and reshape their reality in a real-user environment,
without the need for specialized equipment. In this section, we explain Prop-Chromeleon’s user flow, design, and
implementation. Prop-Chromeleon uses a VR headset and a depth camera to enable MR, a combination of generative AI
models for the generation of 3D content, and AR authoring tools for spatial tracking.

3.1 User Journey

The user journey can be described as an interactive transformation process. After entering the designated scene, the
user provides a prompt via a physical keyboard or speech (Figure 2). The user’s prompt will then appear in an input
field UI within the headset. For example, on Figure 2 left, the user types "Master Yoda" and clicks the space button on
the keyboard. Once the prompt is confirmed, the system captures the scene’s data and hide the input UI, sends the
information to a cloud server for processing, and returns a corresponding 3D model, which will be anchored to the
physical object in 6 Degrees of Freedom (DoF) in real-time. This process typically takes 20-30 seconds for the cloud
server (with a single A10G) to generate and return the model. The user then sees the object being visually transformed
into the generated 3D model in the headset, which remains aligned during movement and rotation. In our example
(Figure 2 right), a generated Master Yoda appears aligned on the bear. The user can now interact directly with the real
object while perceiving it as the virtual one in MR.

3.2 Prop-Chromeleon Pipeline

To generate 3D content based on user prompts and the shape of real-world objects, we combined a text-to-image AI
model with a 3D reconstruction model, along with AR authoring tools and a capture system to create a unique pipeline
(Figure 3). The processes of image generation and 3D transformation occur sequentially as a coroutine in a cloud server,
preventing any heavy computational load from affecting the user.

3.2.1 Model Input. The input stage of the pipeline begins once the user completes their prompt (Figure 3A), and its
primary goal is to capture precise information about the physical object to ensure accurate alignment of shape during
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Fig. 3. The Prop-Chromeleon processing pipeline combines depth and object tracking, and integrates the user’s prompt by combining
Stable Diffusion and ControlNet to generate a 3D object that is overlaid and aligned with the physical prop.

generation. When the user finishes input and clicks the space button, the depth camera mounted in front of the HMD
captures a depth map from the user’s perspective which serves as Prop-Chromeleon input together with the user’s
prompt. If a depth camera is not available, an alternative way to add depth input is by taking a regular picture and
using depth estimation algorithms. Although this eliminates the need for a depth camera, it adds extra time for depth
inference and may yield less accurate results in low-light or blurry conditions.

3.2.2 Text to image. Our second component (Figure 3B) converts the model input into a 2D image that aligns with
the user’s prompt while adhering to the physical object’s shape by leveraging generative AI models. The depth map
from the Model Input component is used as the control frame in ControlNet [51], ensuring the image conforms to the
physical object’s shape. The user prompt guides the content creation, resulting in an image that aligns with the view,
ready for the next stage (Image to 3D). We selected Stable Diffusion 2.1 [40] and ControlNet v1.1 [51] for this process
due to their strong performance and open-source availability. ControlNet ensures precise shape control, while Stable
Diffusion generates diverse and accurate images based on the prompt.

3.2.3 Image to 3D. To enable the user to view a generated 3D object rather than a flat image anchored to the physical
object, this component (Figure 3C) reconstructs a 3D mesh based on the 2D image generated by the previous step. We
used TripoSR [47] an open-source 3D reconstruction model for this purpose. Before initiating the mesh generation
process, the background of the image is removed using the Rembg tool [17], which is natively implemented in the
TripoSR to ensure that only the primary object in the scene is processed to a 3D object. The successful removal of the
background is vital, as any residual elements can shift the center of the generated model, potentially causing errors in
the tracking system and leading to a mismatch between the real and virtual objects. Maintaining a clean and simple
background can help with the segmentation process.

3.2.4 Spatial anchoring. The final component of the pipeline uses AR authoring tools to anchor the generated 3D mesh
to the real object (Figure 3D). We chose Vuforia [37] because of its robust tracking capabilities and general availability.
In our system, we used Vuforia’s Model Target function for rapid generation of tracking references from 3D models,
supporting real-time 6 DoF tracking. This function allows us to use generated models as a tracking reference, scaling
the system to accommodate various objects. Rather than directly using prompt-generated models as tracking references,
we used TripoSR to transfer images of the original items for more stable tracking performance to items of various
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shapes (Figure 3). Once processing is complete, the model is returned to the user’s view, resized to match the run-time
tracking reference of the physical object, and attached to it in real time. This completes the Prop-Chromeleon process,
and the user can now physically interact with the physical object that has been visually transformed to the virtual
object (Figure 2b).

3.3 Implementation

We used Unity version 2022.3.20f1, Vuforia Engine version 10.22, ControlNet version 1.1, and Stable Diffusion version
2.1 with the version 1.4 checkpoint in our system. ControlNet is used as an extension for Stable Diffusion. We call their
function through the webuiapi library using Python. We mounted a ZED Mini depth camera in front of a Meta Quest 2
headset as our hardware setup. It is essential for the depth camera to stream from the user’s natural point of view to
prevent confusion and ensure that it captures the depth map from the same perspective. This setup can be replicated
using other depth-sensing devices, or even regular cameras by using ControlNet’s native depth estimation.

4 STUDY 1: GENERATION

The Prop-Chromeleon system is designed to transform real-world objects into items prompted by the user while
maintaining their original shape. Therefore, we conducted a technical analysis to assess its performance across a dataset
of various object shapes and prompts. Our analysis consisted of two parts. First, we evaluated the system’s ability to
generate accurate 3D models which are overlaid on the physical object. Second, we qualitatively assessed the generated
results of each combination of prompt and shape based on a set of heuristics relevant to the quality of Prop-Chromeleon
output.

4.1 Preliminary Test

To better understand the types of prompts users might employ when interacting with Prop-Chromeleon, we conducted
a preliminary test with 9 participants (6 Male, 3 Female, average age: 29.6, SD: 11.76) to explore user behavior patterns
during prompt generation. All participants were recruited from a local university campus, with backgrounds in design,
fine art and engineering. Each participant was first introduced to the system, after which they were provided with a
Paddington bear (Figure 2) as a reference object and asked to generate at least 3 different prompts. We then collected all
the prompts from the participants and listed them in Figure 4.

Fig. 4. User-generated prompts from preliminary study. Symbols indicate the belonging prop template specified in subsection 4.2: * =
‘[Noun]’, † = ‘[Adjective] [Noun]’, ‡ = ‘[Noun] with [Description]’ and § = ‘[Noun] [Doing something]’.
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4.2 Prop-Chromeleon Dataset

To comprehensively evaluate our system and ensure its relevance to real-user environments, our goal was to evaluate
its performance in a wide variety of shapes and prompts that users are likely to encounter in everyday scenarios. As
such, we built a generation dataset consisting of a diverse range of shapes and prompts. First, we randomly selected 50
3D models with distinct shapes from ShapeNetCore v2 [7], a large-scale 3D shape dataset, to represent a wide range
of objects. This allowed us to evaluate a larger diversity of shapes instead of using real-world objects. We utilized
Blender [4] to generate a depth map for each model from their Isometric View, positioned 35 degrees above the ground
and rotated horizontally by 30 degrees, for application in Prop-Chromeleon.

For the prompts, we analyzed the patterns of the user-generated prompts from our preliminary tests, focusing on
both syntax and content (Figure 4). This ensured that the prompts we use in our analysis represented the prompts we
could expect users to input. Based on these prompts, we identified four template structures:

(1) ‘[Noun]’
(2) ‘[Adjective] [Noun]’
(3) ‘[Noun] with [Description]’
(4) ‘[Noun] [Doing something]’

We then generated two sets of prompts based on these templates using ChatGPT 4 [34]. The first set of general
prompts was created without considering the shape of the objects and applied to all 50 models. We generated two
prompts for each template, resulting in eight prompts. The second set of object-specific prompts was tailored to each
object’s shape, and we used ChatGPT’s image capabilities to assist this process. Again, we generated two prompts per
structure resulting in 8 prompts × 50 objects = 400 distinct prompts. We tested Prop-Chromeleon by applying general
and object-specific prompts to the same set of 50 models, generating a total of 800 generations for evaluation. Please
refer to our dataset repository [anonymized] for the selected models, prompts, and generated results.

4.3 Mesh Similarity Analysis

Shape similarity is a crucial metric to evaluate, as visual-haptic mismatches can lead to negative user experiences. We
begin by capturing both the input geometry and the generated geometry from the pipeline as triangle meshes. Inspired
by the evaluations in recent state-of-the-art neural surface reconstruction work in the computer graphics community
[8], we utilize Hausdorff distance and Chamfer distance, both of which are well-established methods in visual computing
to evaluate the geometry generation quality of our pipeline quantitatively. In datasets like ShapeNet, many objects have
hollow interiors (e.g., thin volumes enclosing empty spaces, such as dressers or closets), rendering naive volumetric
metrics like volume Intersection over Union infeasible. Therefore, we rely on surface-based measures. Hausdorff
distance provides a lower bound measurement of geometric difference by identifying the maximum point-to-point
distance between the input and generated shapes. Chamfer distance, as a more general point cloud-wise metric, offers a
robust average-case analysis by summing the squared distances between corresponding points. Together, these metrics
capture both outliers (extreme differences) and average similarity. Given that the initial poses of the input and generated
geometries (derived from the depth map of the current camera view) often differ significantly, we normalize both shapes
into a unit sphere. We then randomly sample rotations of the generated shape and perform rigid alignment for each
permutation, taking the minimum squared sum distance before computing the final Hausdorff and Chamfer distances.
This approach ensures that the results are not trapped in local minima, providing a more accurate and representative
similarity assessment.
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Fig. 5. Comparison between generated meshes (blue) and original object shapes (white) produced by our pipeline. The Hausdorff and
Chamfer distances quantify the geometric differences between the original and generated shapes for each object.

4.3.1 Results. We computed the Chamfer and Hausdorff distances over 50 models, each evaluated with 16 unique
prompts from two conditions, resulting in a total of 800 input-generated geometry pairs. We observe that excluding the
top outlier groups significantly impacts the shape similarity metrics, with Chamfer and Hausdorff distances decreasing
as more extreme entries are removed. After excluding the top 100 groups, the Chamfer distance drops to 0.270 and
the Hausdorff distance to 0.410, while excluding the top 50 groups results in slightly higher values of 0.290 and 0.431,
respectively. For consistent comparison, all shapes are normalized to a unit sphere with a radius of 1, where their size is
scaled by the maximum displacement, and all objects are centered.

In addition to numerical results, visual comparison (Figure 5) shows that the input and generated 3D models are
almost identical, with only slight differences in fine details. The low Chamfer distance confirms minimal average
deviations between the models, while the low Hausdorff distance indicates that even the largest differences are small
and localized. These visual similarities indicate that the calculated distances are indeed very low, reflecting the high
accuracy of the generated shapes.

4.4 Prop-Chromeleon Generation Evaluation

Due to the subjective nature and variety of the generated results, it is challenging to evaluate prompt fidelity for each
group with a single success-or-failure metric. In our study, we adopted a multi-dimensional approach and formulated
three binary questions:

Q1: Does the model include the main elements from the prompt?

Q2: Does the model accurately represent specific features from the prompt, like color or texture?

Q3: Does the model reflect the intended theme of the prompt?

We defined these three questions as we found that after reviewing multiple generations, the generated results of
the prompts were expressed in three distinct ways. Q1 incorporates the main element into the designated shape. This
assesses how well the generated object’s shape fits into the original one. For example, a successful generation in this
category could be a spherical object transformed into a crouching dragon that fits the shape of the object. A failed
generation would be generating a ball with dragon scales but lacking other essential dragon characteristics, such as the
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Fig. 6. The website interface used for evaluating generated results. It presents the prompt, original object, and generated object,
along with a 360-degree rotating video of the generated object. Each generation was evaluated by answering three questions, with
the order of presentation randomized to ensure unbiased evaluation.

head or eyes. Q2 represents the color or texture. For instance, while the dragon-scaled ball may fail in terms of shape, it
would be a successful result in terms of texture. Some prompts, such as “jewelry with gold and silver”, express their
features primarily through this category. Q3 represents the intended theme, which refers to the general perception of
the result. Prompts like ’A talking cactus with a sombrero’ or ’futuristic vehicle’ can be interpreted in various ways
when considering the first two categories. Also, sometimes the “generated results” for these prompts can be more
abstract. Therefore, we included the “intended theme” to evaluate this aspect from a broader perspective.

We created a website for the evaluation that presents all the necessary information for coding (Figure 6), including
the prompt, the original object, the generated object, and a 360-degree rotating video of it. Each generation was coded
by answering the three questions. The generation order was randomized. A randomly selected subset of 112 generations
were coded by three authors to ensure alignment between raters. We then used Fleiss’ kappa to evaluate the alignment
between coders. Overall, there was a very good alignment between the raters. Q1 had a very good alignment, 𝜅 = .848
(95% CI, .741 to .955), 𝑝 < .001, 105 of 112 aligned (93.75%). Q2 had a good alignment, 𝜅 = .747 (95% CI, .640 to .854),
𝑝 < .001, 111 of 112 aligned (99.11%). Finally, Q3 also had a very good alignment 𝜅 = .851 (95% CI, .744 to .958), 𝑝 < .001,
104 of 112 aligned (92.86%). After establishing a high alignment between coders, the rest of the dataset were rated by a
single author.

4.4.1 Results. Overall, our results indicate that the Prop-Chromeleon system effectively generates 3D models that align
with user prompts, particularly when customized prompts are tailored to specific requirements. For Q1, which assesses
whether the main elements from the prompt were included, custom prompts achieved a 95.5% success rate, compared
to 64.5% for general prompts, with an overall success rate of 80.0%. In Q2, evaluating color and texture accuracy, the
system performed consistently well, with a 97.0% success rate for custom prompts and 90.3% for general prompts (93.4%
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overall). Q3, focusing on thematic accuracy, showed a 94.3% success rate for custom prompts and 63.5% for general
prompts, with an overall success rate of 78.8%.

These results indicate that customized prompts generate better results in terms of key elements and thematic accuracy
compared to general prompts. This improvement is due to the alignment between the original object and the target
output, as well as the flexibility allowed by the prompt. For example, transforming a bucket into a mug yields more
accurate results than transforming it into an owl, which requires a more constrained bird-like shape, limiting the
system’s ability to capture the necessary features. Similarly, prompts like "copper robot" achieve higher accuracy in
both elements and theme compared to the owl, as the robot allows for more flexible shapes. However, color and texture
generation is less dependent on shape similarity, resulting in higher accuracy across both prompt types.

In conclusion, the Prop-Chromeleon system performs optimally when using custom prompts that consider the context
of the original object, especially when there is flexibility in shape. Color and texture accuracy remain consistently high,
while thematic alignment improves significantly with personalized input, highlighting the system’s adaptability to
user-specific needs.

4.5 Summary

In summary, our evaluations demonstrated Prop-Chromeleon’s strong performance in capturing key prompt elements,
color, texture and thematic accuracy. The results also showed that generation was most successful when prompts were
customized to match the object’s form. Additionally, mesh similarity analysis using Chamfer and Hausdorff distances
confirmed low geometric deviations between the input and generated models, validating the pipeline’s effectiveness in
maintaining high shape accuracy. The dataset used for our analysis can be found at [ANONYMIZED], accompanied by
detailed instructions to replicate the experimental setup.

5 STUDY 2: USER TESTS

To evaluate the effectiveness of Prop-Chromeleon in enhancing haptic experiences and achieving usable transformations,
we conducted a user study focused on how shape alignment within Prop-Chromeleon improves haptic feedback, as
well as collecting user feedback on the overall experience and transformation quality.

5.1 Participants

Twelve participants (7 males, 5 females) aged 23-54 (M = 30.33, SD = 10.44) took part in the study. Participants were
asked to rate their experience with VR/AR and Generative AI on a scale of 1 (minimal experience) to 5 (extensive
experience). The sample had moderate experience with VR/AR (M = 2.50, SD = 1.38) and Generative AI (M = 2.67, SD =
1.37).

5.2 Conditions

Two conditions were created to evaluate the impact of shape alignment on haptic feedback in Prop-Chromeleon. The
key difference between the conditions was the alignment of the virtual model with the physical object.

Prop-Chromeleon Condition: In this condition, ControlNet was used to align the virtual model with the haptic
prop, ensuring that the virtual and physical objects matched in shape, as shown in the middle of Figure 7.

Baseline Condition: In this condition, no shape alignment was provided, serving as a baseline for comparison, as
shown in the right part of Figure 7.
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Fig. 7. Prompts, original physical objects, Prop-Chromeleon generations, and baseline generations used for Task 1 in our user study.

Both conditions were tested across three scenes, each with a different physical prop: a Paddington Bear toy, a Nike Air
Force One shoe, and a stainless steel bottle( Figure 7). The same virtual models were generated in both conditions using
the following prompts: ’cute pig’ for the bear, ’yellow robotic dog’ for the shoe, and ’talking cactus with a sombrero’ for
the bottle. The virtual models were anchored to their corresponding physical objects in Unity.

5.3 Tasks

5.3.1 Task 1: System Comparison. Task 1 was designed to compare the effectiveness of shape alignment in Prop-
Chromeleon with a baseline condition. Participants interacted with three physical objects across both conditions: one
where the virtual model was aligned with the physical object (using Prop-Chromeleon) and one where no alignment
was provided (baseline). For each object, participants were asked to follow these instructions:

(1) Without touching it, observe the object from different angles.
(2) Slowly hold the object with both hands, and move it to the other side of the table.
(3) Touch and feel the shape and outline of the object.
(4) Imagine it’s a game, interact with the model in any way you prefer.

5.3.2 Task 2: Prop-Chromeleon Exploration. In the second task, participants fully engaged with Prop-Chromeleon by
transforming the same three physical objects from Task 1. Participants could choose any prompt for each object, and
Prop-Chromeleon generated corresponding virtual models based on those prompts. After each transformation, they
were asked to rate the generation result on "how well it met their expectations" on a scale of 1-5. Additionally, their
behavior and prompt choices were observed and discussed to gather further insights into the user experience.
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5.4 Procedure

Before starting the study, participants first signed a consent form and answered a demographic questionnaire. Each
participant was then introduced to the concept of VR haptics, which included an explanation of the tactile sensations
experienced when interacting with virtual objects in typical VR environments. Participants then put on the headset
equipped with the attached depth camera system and were given adequate time to adjust it for comfort. Following this,
they received a tutorial on using Prop-Chromeleon. Once participants were comfortable with the system, they were
guided to proceed to the two tasks described below, which designed to evaluate Prop-Chromeleon’s effectiveness in
enhancing haptic experiences. All participants began with Task 1, as shown in Figure 9. To balance the study, half of
the participants started with the Prop-Chromeleon condition, while the other half began with the baseline condition.
After completing both conditions, participants engaged in a semi-structured interview where they discussed their
ratings, system preferences, and how various factors influenced their experience. After completing all three scenes in
one condition, participants filled out a questionnaire based on the multidimensional Haptic Experience (HX) scale. The
HX scale is an 11-item questionnaire designed to measure four key dimensions of haptic interaction: Realism, Harmony,
Involvement, and Expressivity [2]. For Task 2, participants engaged in another semi-structured interview following
the rating process, providing further feedback on their experiences with Prop-Chromeleon. This discussion helped to
identify patterns in how participants interacted with the transformed models and prompted a deeper understanding of
user preferences and engagement.

5.5 Results

We evaluated Prop-Chromeleon’s effectiveness and usability through two tasks. Overall, both tasks was conducted
successfully. A combination of quantitative results and insights from post-study interviews led to several key findings.

5.5.1 Questionnaires and Preferences. When asked about their preferred system, eleven out of the twelve participants
stated that they preferred Prop-Chromeleon, while only one participants mentioned the baseline as their favorite. These
results were further highlighted by the results of the HX questionnaire (Figure 8) which were generally in favour of
Prop-Chromeleon over the baseline. The participants perceived that the haptic feedback for Prop-Chromeleon was
significantly more “realistic” (R1: 𝑧=2.59, 𝑝=.010, 𝑟=.75), “believable” (R2: 𝑧=3.10, 𝑝=.002, 𝑟=.89), and “convincing (R3:
𝑧=2.87, 𝑝=.004, 𝑟=.82) than the baseline. These results were further confirmed by the significant difference for the
combined “Realism” factor (PA1: 𝑧=3.06, 𝑝=.002, 𝑟=.88).

The participants further indicated that the haptic feedback for the baseline was significantly more “disconnected from
the rest of the experience” (H3: 𝑧=3.13, 𝑝=.002, 𝑟=.90), “felt out of place” (H5: 𝑧=2.98, 𝑝=.003, 𝑟=.86), and “distracting”
(I1: 𝑧=2.70, 𝑝=.007, 𝑟=.77) than Prop-Chromeleon. These results were further confirmed by the significant difference in
the “Harmony” factor (PA2: 𝑧=3.06, 𝑝=.002, 𝑟=.88). Meanwhile, participants also indicated that for Prop-Chromeleon,
participants significantly more “liked having the haptic feedback part of the experience” (H2: 𝑧=2.88, 𝑝=.004, 𝑟=.83) and
felt significantly more “engaged with the system due to the haptic feedback” (I2: 𝑧=2.76, 𝑝=.006, 𝑟=.80). These results
were again confirmed by the combined “Involvement” factor (PA3: 𝑧=3.06, 𝑝=.002, 𝑟=.88).

“Engagement” was the only factor that we found no significant differences between Prop-Chromeleon and the
baseline (PA4: 𝑧=1.68, 𝑝=.092, 𝑟=.48). Although the results showed that the participants found that “the haptic feedback
changes based on changes in the system” (E4: 𝑧=2.07, 𝑝=.038, 𝑟=.60) significantly more for Prop-Chromeleon. We found
no significant differences when asked whether each system’s haptic feedback “all felt the same” (E1: 𝑧=0.96, 𝑝=.336,
𝑟=.28), or whether “the haptic feedback reflects varying inputs and events” (E5: 𝑧=1.55, 𝑝=.121, 𝑟=.45). These results
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Fig. 8. Questionnaire results for individual questions, and haptic factors. We found a significant difference for all questions and
factors except E1, E5, and PA4.

Fig. 9. Participants interacting with different condition groups in the user study, Left: Participant moving the prop in the shoe-Robotic
Dog scene, baseline condition; Middle: Participant touching the prop’s hat brim in the Paddington Bear-Cute Pig scene, Prop-
Chromeleon condition; Right: Participant engaging with prop in the Paddington Bear-Cute Pig scene, Prop-Chromeleon condition;

are not surprising, since we only evaluated passive haptic systems where the haptic experience was static based on the
shape of the physical object.

5.5.2 Interview Results.

Prop-Chromeleon improves user interaction and engagement. Prop-Chromeleon notably improved user interaction and
the quality of the haptic experience. We noticed that participants demonstrated a smoother and more active interaction,
with the ability to precisely locate and manipulate objects with Prop-Chromeleon (Figure 9). This contrasted with the
baseline, where several participants missed their initial grip due to a misalignment between real and virtual objects.

When asked which condition they preferred, 11 of the 12 participants favored Prop-Chromeleon, describing it as
more “realistic”(P1, P3, P9) and “convincing” (P2, P7, P8, P10), and the haptic experience felt more “natural” (P2). The
participants also specifically commented on the difference between Prop-Chromeleon and the baseline. P8 described
that moving objects with the baseline felt like “using a controller”, while with Prop-Chromeleon, it felt like they were
“really touching the object”. Some participants mentioned that although the haptic feedback for the baseline was “helpful
to some extent” (P12), they doubted “how much lift it brings to the experience” (P10).

Shape alignment enhances the haptic experience. Participants highlighted that Prop-Chromeleon provided a more
immersive haptic experience. Several noted that the third task of touching and feeling the object’s shape and outline
felt the most different between the two conditions. While interacting with the Paddington Bear, P10 remarked: “For
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a moment, I totally forgot it was something else there”. P9 and P2 said that touching the bear’s hat brim in Prop-
Chromeleon, while seeing themselves touching a virtual hat in the headset, was “the most impressive moment”. P4
shared a similar experience when touching the hand and feet of the bear. For the baseline, such deep experiences
regarding haptic feeling were not mentioned. These results indicate that Prop-Chromeleon’s shape-alignment approach
enhances the perceived haptic experience.

Prop-Chromeleon provided enjoyable and transformative experiences. Prop-Chromeleon not only improved the per-
ceived haptic experience but also made the experience enjoyable and transformative. For task two, participants responded
overall very positively to the generated transformations (M=3.94, SD=0.92). Many participants described the Prop-
Chromeleon experience as “fun” and “interesting”. Participants interaction during the second task was often joyful and
filled with laughter during the generated transformations. Many expressed excitement while waiting for the results
after inputting their prompts, and surprise upon seeing the outcomes. In post-study interviews, many said they would
like to try it again.

When asked “If you could take this home, where would you apply it?” Participants offered creative answers beyond
hand-held props, such as having a “Star Wars themed bedroom”, a “cool painted bike”, a “luxury villa”, or turning a
person into “James Bond”. Others envisioned more practical uses for design and productivity, such as “helping generate
design ideas”, “rapid prototyping”, or “making a pill bottle more child-friendly”. Some participants also suggested adding
a feature to recommend what to generate based on the real object.

Influence of Physical Props on Prompt Choice. The choice of prompts varied significantly among the participants and
was at times influenced by the physical props themselves. The participants gave a wide range of prompts in task 2
( Figure 10). Some referenced pop culture, like Star Wars, superheroes, or cartoon characters for the Paddington Bear,
while others chose real-world items such as “Palm tree with big leaves and a giant trunk” for the bottle or “Seafood
risotto” for the shoe. Imaginative prompts included “Silver Grater” for the shoe, and real figures such as “Donald Trump”
and “Kim Jong Un” for the Paddington Bear. Among the props, the Paddington Bear transformations received the highest
rating (M=4.17, SD=0.58), followed by the Shoe transformations (M=4.00, SD=0.95), and the water bottle transformations
(M=3.67, SD=1.15). We also observed that the participants’ choice of prompts was sometimes influenced by the haptic
prop. For example, when using Paddington Bear as the prop, many prompts related to animals, such as ’A blue lion’ or
’Pig’. Similarly, with the bottle prop, prompts like "Palm tree" and "R2-D2," which are column-shaped, were common.
The variation of prompts combined with the positive response from participants showcases the highly transformative
capabilities of Prop-Chromeleon.

Texture mismatch can negatively affects realism and believability. Although 11 of the 12 participants favored Prop-
Chromeleon over the baseline group, one participant preferred the baseline. They found that texture mismatches, such
as a hairy sensation instead of the expected pigskin for the Paddington bear, were unrealistic. They also preferred to be
able to see uncovered parts of the real object, which made them feel more “secure” and “safe” when reaching for it.

Similarly, when asked what factors stopped you from trusting Prop-Chromeleon’s generated object, other participants
also mentioned texture mismatches. For example, P7 expected a cactus prompt input to feel “prickly” or “soft” but the
stainless steel bottle underneath felt “cold and metallic”, with P8 noting that this kind of mismatch “reminded me this is
not real”. These comments show that in addition to shape, texture alignment also plays an important role in enhancing
the believability of haptic experiences.
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a. “Donald Trump” b. “A blue lion” c. “Kim Jong Un”

d. “Siberia bear” e. “Seafood risotto” f. “Silver Grater”

g. “Palm tree with big leaves and giant trunk” h. “R2-D2” i. “Darth Vader”

Fig. 10. Examples of user-generated prompts and their corresponding generated results from Task 2.

Occlusion conflicts can negatively affect immersion and spatial perception. Conflicting occlusion cues between hands
and 3D object due to tracking limitations would occasionally negatively affect the haptic experience. When the generated
model was first generated, some participants perceived it as a flat layer on the screen rather than a 3D object, as the
model would seem to block the hands, making it look closer to their eyes. Most participants accordingly adjusted their
hand interactions accordingly to avoid confusion. However, a participant (P6, with limited VR experience, 1/5) struggled
with this in later steps.

6 DISCUSSION

We introduced Prop-Chromeleon, a novel approach that transforms everyday physical objects into haptic props for
virtual models created through user prompts, seamlessly integrating generative AI into MR environments. Prop-
Chromeleon enable highly adaptive passive haptic that do not rely on pre-existing libraries of virtual objects to match
the shape of the physical objects, while at the same time supporting a wide variety of physical shapes. Our technical
evaluations and user studies demonstrate the system’s ability to generate and align 3D models with physical objects by
considering the original shape of the physical object during generation, thus creating immersive and engaging haptic
experiences, which underscore Prop-Chromeleon’s potential to bridge the gap between physical interaction and virtual
content.

16



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Prop-Chromeleon CHI ’25, Apr 26th - May 1st, 2024, Yokohama, Kanagawa Prefecture, Japan

Our generation study highlighted several key factors that contribute to a successful transformation. Most notably,
customized prompts that align closely with the haptic prop’s shape consistently led to superior results. Prompts
that describe objects with flexible or adaptable forms, such as a “spaceship” or “jewelry with silver and gold”, were
particularly effective. This result is largely due to the way that generative models interpret and transform textual input
into visual content. Ensuring harmony between the user’s prompt and the shape of the original physical is essential to
achieve visually convincing transformations. In addition, our user study revealed the importance of managing texture
mismatches, as they can influence the user’s perception of the transformation. Future work could explore ways to help
users craft optimal prompts or using alternative modalities such as images as input for generation. One promising
avenue is to integrate additional models to analyze the texture and shape of the physical object to provide intelligent,
contextually relevant suggestions for more accurate and effective transformations.

The user study confirmed that Prop-Chromeleon significantly enhances the haptic experience, with shape alignment
emerging as a critical factor in this improvement. By ensuring that the physical object closely mirrors the virtual model,
users can engage in more immersive interactions, which enhances the overall sense of realism. Texture also plays a
role, as noted in participant feedback. Users consistently highlighted the impact of texture congruence between the
virtual model and the physical object on their haptic experience. Although Prop-Chromeleon already provides a highly
engaging experience, future developments could focus on better aligning texture properties to further enhance realism.

In Prop-Chromeleon, we opted to generate 3D models using single-view depth maps rather than full 3D scans.
Although full scanning could provide more detailed geometry, the trade-offs in terms of processing complexity and
real-time responsiveness made single-view depth capture a more practical solution. Both our generation analysis and
user studies demonstrated that this approach produces sufficiently accurate 3D models, enabling seamless alignment
between virtual and physical objects. Future work may explore multi-angle depth capture, progressive updates to the
depth capture, or other techniques to address edge cases where model fidelity could be further improved. However,
the current implementation shows that the trade-off made in favor of speed and accessibility does not significantly
compromise the quality of interaction or user satisfaction.

Participants responded enthusiastically to their experience with Prop-Chromeleon, describing it as "fun" and "inter-
esting." The ability to personalize transformations and interact with physical objects in novel ways added a layer of
creativity and engagement that was well received. This positive feedback highlights Prop-Chromeleon’s potential to
captivate users by combining tangible interactions with the flexibility of generative AI. The participants also mentioned
multiple avenues for generation beyond hand-held objects such as entire rooms or people. We believe that integrating
Prop-Chromeleon with systems such as LLMR [12] or RemixedReality [26] for room-scale generation introduces an
exciting design space for future exploration and the general use of generative AI in MR.

7 CONCLUSION

We presented Prop-Chromeleon, a novel passive haptic system that transforms everyday physical items into haptic
props for AI-generated virtual objects in MR that adapt to the shape of the physical object. We show in two user studies
that Prop-Chromeleon is capable of handing a wide variety of object shapes and user prompts. Furthermore, an MR
user study showed that Prop-Chromeleon provides believable haptic experiences and was preferred to a static baseline.
In sum, Prop-Chromeleon show that Generative AI can be effectively used for passive haptics in MR. Furthermore,
considering the shape of the physical object during generation enhances the haptic experience. Our work opens up
further research on additional model input and beyond hand-held objects for object transformation to accurately shape
haptic MR experiences in our daily lives.
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